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Meta-analysis of longitudinal studies

K Jack Ishaka,b, Robert W Platta,c, Lawrence Josepha,d, James A Hanleya,e and J Jaime Caroa,f

Background Longitudinal studies typically report estimates of the effect of
a treatment or exposure at various times during the course of follow-up.
Meta-analyses of these studies must account for correlations between effect
estimates from the same study.
Purpose To describe and contrast alternative approaches to handling correlations
inherent to longitudinal effect estimates in meta-analyses.
Methods. Linear mixed-effects models can account for correlations in a number of
ways. We considered three alternatives: including study-specific random-effects,
correlated time-specific random-effects or a general multivariate specification that
also allows correlated within-study residuals. Data from a review of studies of the
effect of deep-brain stimulation (DBS) in patients with Parkinson’s disease are used
to illustrate the application of these models. Results are contrasted with those from
a naı̈ve meta-analysis in which the correlations are ignored.
Results The data included 46 studies that yielded 82 estimates of the effect of DBS
measured at 3, 6, 12 months or later after implantation of the stimulator. Models
that accounted for correlations, particularly the full multivariate specification,
provided better fit (lower AIC) and yielded slightly more precise effect estimates.
This was in part due to a relatively extreme observation from a study that provided
similar estimates at other times, which in the naı̈ve approach exerts greater
influence since it is treated as an independent observation.
Limitations Since the true values of the parameters are not known, it is impossible
to confirm that estimates from the multivariate approach are necessarily more
accurate.
Conclusion Standard meta-analytic models can be readily extended to account for
correlations between effects in longitudinal studies. These models may provide
better fit and possibly more precise summary effect estimates. Clinical Trials 2007; 4:
525–539. http://ctj.sagepub.com

Introduction

Longitudinal studies are commonly used in clinical
and epidemiological research to assess the effect of
a treatment or exposure over time. These studies
typically involve a series of measurements of
the response at pre-determined intervals.
Treatment effects can then be described by
estimates calculated at various times
(corresponding to the measurement times in
the study). Alternatively, longitudinal data are
sometimes analyzed using summary measures [1]

(e.g., mean or slope of response values for each
participant), in which case the treatment effect
is expressed in terms of (relative or absolute)
differences in the summary measure (e.g.,
difference in mean slope of response comparing
treated to controls).

Meta-analyses of longitudinal studies reporting
treatment effects in terms of a single summary
measure can be handled with standard approaches
[2–4]. Special consideration is required, however,
when effect estimates are reported at different
times or in terms of multiple parameters,
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(e.g., polynomial functions) since these are
inherently correlated. The correlations may be
biological (e.g., course of the disease), structural
(e.g., effects calculated at different times relative
to a common baseline) or statistical (e.g.,
measurements subject to similar ‘errors’ or derived
from same equation – e.g., intercept and slope).

A few examples of meta-analyses of longitudinal
data have appeared recently [5–7]. Lopes et al. [5]
describe a Bayesian model for the meta-analysis of
longitudinal studies with patient-level data using
mixtures of multivariate normal distributions.
Farlow et al. [6] also present a meta-analysis of
longitudinal studies based on patient-level data.
Maas et al. [7] describe a mixed model for the
meta-analysis longitudinal effect estimates; they
handle the correlation between observations by
allowing random intercepts and linear time effects.

In this article, we discuss a general linear
mixed-effects model for the meta-analysis of
longitudinal effect estimates and discuss alternative
specifications to account for correlations between
the observations. This is a new application of
the multiple-outcome models that have been
used for meta-analyses of two or more related
outcomes [8–18]. We compare findings to those
from independent meta-analyses at each time
(i.e., ignoring correlations).

The use and relative performance of the models
are illustrated with data from a meta-analysis of the
effect of deep-brain stimulation (DBS) on motor
skills of patients with Parkinson’s disease at 3, 6,
and 12 months and beyond after implantation of
the stimulator.

Models for longitudinal meta-analytic
data

General linear mixed model for longitudinal data

Suppose K measurements are taken over time on N
units (e.g., studies in a meta-analysis); we denote by
yi, the K�1 vector of observed values from the ith
unit and by yij the jth observation from this unit.
A general linear mixed model that can account
for the correlations between the observations
is given by [19,20]:

yi ¼ Xi� þ Zi�i þ "i,

where Xi is a K� p matrix of possibly time
dependent covariates, � is a p�1 vector of fixed
effects, Zi is a K� q matrix of covariates which are
usually a subset of those included in Xi, �i is a q�1
vector of random-effects and "i is a K�1 vector of
residuals. Observations from different studies are
assumed to be independent, so that cov("ij, "ml)¼0

when i 6¼m and for any observations j, l¼1 . . .K.
It is also assumed that residuals and random-effects
are independent: cov("i, �i)¼0.

The joint distribution of the random-effects is
assumed to be a q-dimensional multivariate normal
(MVN) distribution with mean 0 and (q� q)
covariance matrix D: �i�MVNq(0, D). The residuals
are also assumed to have a joint MVN distribution:
"i�MVNk(0, Si), where Si is a K�K covariance
matrix. The marginal distribution of yi is then given
by MVNk(Xi�, Vi), where Vi ¼ var yi

� �
¼ Z0

iDZi þ Si.
The structure imposed on D and Si determines

how the between- and within-unit (e.g., study)
correlations are handled. This may be done in
a number of ways [19]: for instance, one may
choose to not include any random-effects and set Si
to be a general unstructured positive definite
matrix that is constant for all units: i.e., Si¼ S.
Another approach is to allow a random intercept
(i.e., set Zi to be a column of 1s) with (scalar)
variance D and set Si ¼ �2IK, where IK is the K�K
identity matrix. This leads to a compound
symmetric correlation structure, whereby
corr(yij, yil)¼D/Dþ �2 when j 6¼ l. When multiple
random-effects are involved, D must be given
a structure to describe the relationship between
the random-effects within each unit. Some of
the most commonly used structures are [21]:
compound-symmetry or constant correlations;
first-order auto-regressive (AR(1)), where correla-
tions weaken by powers of the lag between
observations; Toeplitz, or banded, where observa-
tions at different lags are allowed to be differently
correlated; and, unstructured, where no patterns
are assumed aside from positive-definiteness.

Mixed models for meta-analysis of longitudinal
data

The general model described above can be
adapted to meta-analyze longitudinal data with
slight modifications. In fact, the univariate
random-effects meta-analysis model commonly
used in practice [2–4] is a special case with K¼1
and Zi¼1 (i.e., random-intercept). The within-
study variance, which is a scalar in the univariate
case, is set to the variance of the observed estimate
reported in each study and assumed known with-
out error. This has the effect of weighting each
observation by the reciprocal of its variance, so that
more precise estimates are more influential.

In meta-analyses of longitudinal data, the units
of observation are studies from which estimates
of the treatment effect are collected at K times.
These times may be chosen based on the
available data and the objectives of the analysis.
Studies may vary with respect to the timing of
measurements, and results at some measurement
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times may not be reported. This can be a form of
publication bias if reporting is related to the
magnitude of the effect, similar to selection bias
that may occur in a study when loss to follow-up or
failure to return for scheduled visits is related to
treatment and prognosis.

Longitudinal models for meta-analytic data
also differ from the general case in the specification
of covariance matrices; in fact, some of
the approaches described above would not
be appropriate in this context. For instance,
random-effects models are increasingly considered
to be better suited for meta-analysis [22–24].
Thus, omitting random-effects and accounting for
correlations through Si alone (i.e., a fixed-effects
approach) would not be ideal. Furthermore, studies
are likely to vary with respect to sample size,
measurement methods and other aspects that will
cause estimates from one study to be more or
less precise than another. The variance may also
vary over time within studies because of loss
to follow-up, for instance. Thus, setting the
within-study covariance matrix Si to �2IK would
not be adequate since it assumes a constant
variance for all effect estimates in all studies.
Si should be set to be at least a diagonal matrix
with components that can have different values.
And, to ensure proper weighting of the data, we set
the diagonal elements of Si to values reported in the
studies, as in univariate meta-analyses.

Model specification begins by setting the
fixed-effects, which will guide the choice of
random-effects. Since the goal of the analysis is to
summarize the effect of treatment over time, Xi

will include covariates that relate the response
variable to time. This might consist of some
parameterization of time (e.g., linear, quadratic,
logarithmic, etc.). Here, we consider the case where
effects are to be summarized at each of the K
measurement occasions. This may be done by
omitting the intercept and including K time
indicators, or by including K�1 indicators with
an intercept. With K¼4, we could set:

Xi ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
64

3
75 or Xi ¼

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

2
64

3
75:

In the first case, a summary estimate is obtained for
each time while in the second, the covariates
measure differences in summary effect estimates at
each time relative to the first occasion, which is
estimated by the intercept. Study-level covariates
(e.g., proportion of males, average age) may also be
included in Xi. These typically have fixed-effects
and, therefore, do not impact the specification of
the correlation structure.

Specification of correlation structure

In what follows, unless otherwise stated, we assume
Si is a diagonal matrix with values set to the
variances of estimates reported in the studies
(we denote the jth diagonal element by S2

ij for
study i). To facilitate notation, we assume Xi only
includes time indicators (i.e., no intercept or other
covariates); including other fixed-effects to the
models described below would not change the
correlation structures.

Random study-effect model

The simplest way to account for the correlation
between observations is to allow a random-effect
that is common to all observations from a given
study. This can be thought of as a random-intercept
model. If, for example K¼4, we would set
Z0
i ¼ 1 1 1 1

� �
, so that �i is a scalar; the model

can then be written as:

yij ¼
XK
j¼1

Xij�j þ �i þ "ij,

where var(�i)¼D, the covariance of the vector of
residuals is cov("i)¼ Si and cov(�i, "ij)¼0 for all i and
j. The variance of the marginal distribution of yij
is Dþ S2

ij. And, the covariance between two
observations collected on occasions j and l in
study i is given by cov(yij, yil)¼D; observations
from different studies are assumed independent.
Thus, the correlation between observations is

corrðyij, yilÞ ¼ D=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ S2

ij

� �
Dþ S2

il

� �r
, which allows

different correlations between observations since
within-study variances can differ at each time.

Random time-effects model

The previous model is somewhat restrictive since
it assumes that between-study heterogeneity
affects observations at each measurement occa-
sion in a given study the same way. This may
not be true, however. For instance, attrition may
occur differently in each study, causing greater
heterogeneity in effects estimated at later times.
We can extend the model by allowing a
random-effect at each measurement occasion.
That is, we set Zi¼Xi; the model is then
given by:

yij ¼
XK
j¼1

Xij �j þ �ij
� �

þ "ij,
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or

yi ¼ Xi � þ �ið Þ þ "i:

Thus, �i is now a K-vector of random-effects
with covariance matrix D. Assuming these are
independent (i.e., D is diagonal) is equivalent
to assuming the observations themselves are
independent, since

covðyij, yilÞ ¼ covð�ij þ "ij, �il þ "ilÞ ¼ covð�ij, �ilÞ

þ covð"ij, "ilÞ ¼ 0,

because both D and Si are diagonal and residuals are
independent of random-effects. This is equivalent
to treating each observation as coming from
a different study, or meta-analyzing the data at
each time separately.

A structure must, therefore, be imposed on D to
account for the correlations between observations.
Ideally, D would be left unstructured to allow
a different correlation between pairs of random-
effects. This adds K(K�1)/2 parameters to the
model, however. Considering that data are
often limited in meta-analysis, this can make it
impossible to reliably estimate the parameters of
the model. More parsimonious structures like
compound-symmetry or AR(1) are more practical,
as they involve only one additional parameter.
This comes at the cost of more constrained
relationships between random-effects, however.

Multivariate model: within- and between study
correlations

The models described so far have assumed within-
study variation to occur independently at different
measurement occasions (diagonal Si) and
accounted for correlations between observations
through random-effects. Correlations exist at
both within- and between-studies, however. For
instance, sampling variability and measurement
error might affect estimates within a study at
different times in a similar way. In general, factors
causing variability between studies (e.g., blinding
methods, randomization, etc) may cause correla-
tions within-studies as the impact of these factors is
shared by all observations. On the other hand,
background factors that cause a given study to be
prone to overestimate the effect at one occasion
might also have a similar impact at other times.

The approaches considered so far capture the
total correlation in the marginal distribution of
the observations. To consider these separately,
we extend the model in the last section by
relaxing the assumption that the within-study
covariance matrix is diagonal. Two approaches

are possible: if studies report the covariance between
estimates, these values may be used to fix the off-
diagonal elements of Si, as with the variances. This is
rarely the case, however. Alternatively, a hybrid
approach may be adopted whereby the diagonal
elements of Si are held fixed and the off-diagonal
elements estimated from the data. This requires
specification of a structure for Si, however, which
introduces more parameters to the model.

Since data are usually limited in meta-analyses,
some simplifications are in order to limit
the parameters added to the model. First, we
assume within-study correlations are constant
across studies (i.e., corr(yij, yil)¼ corr(ymj, yml)¼ �jl
for studies i and m), still allowing the variances
to differ, however. Furthermore, we adopt a
single-parameter correlation structure, like
compound-symmetry or AR(1).

Implementation of the model

Mixed models for meta-analysis are commonly
estimated by likelihood maximization or general-
ized least squares. While generalized estimating
equations are sometimes used with repeated
measures patient data, they are rarely applied in
meta-analyses as these do not allow estimation of
study-level random-effects. These can be useful, for
instance, to derive empirical Bayes confidence
intervals for effects in each of the studies [16].

The models in our example were estimated by
maximum likelihood, using SAS/STAT PROC
MIXED software. Van Houwelingen et al. [16]
describe how the procedure can be adapted
for general multivariate (multiple-outcome)
meta-analyses with fixed within-study covariances.
Additional manipulation is required, however,
if only the within-study variances are fixed and
covariance components are to be estimated
from the data - these are described in Appendix A.
Nam et al. [12] implemented a similar model in
a Bayesian context with BUGS [25].

Case study

Deep-brain stimulation

Data from a meta-analysis of the effect of DBS on
the relief of symptoms of Parkinson’s disease [26]
was used to explore the application of the models
described above. Parkinson’s disease is a
chronic progressive disease characterized
by declining motor function and, eventually,
severe disability [27]. Although pharmacological
treatments are available, medication effects can
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become increasingly unpredictable and short-lived,
leaving patients with little or no relief of symptoms
for much of the day [28]. To prolong effective (‘on’)
periods, physicians increase the medication dose at
the risk of side-effects [29]. DBS, which is delivered
through thin surgically implanted wires in specific
areas of the brain and controlled by the patient, is
meant to provide relief with lower doses of
medication. DBS of the subthalamic nucleus (STN)
[30] has been found to be more beneficial than
stimulation of other sites in the brain for patients
with Parkinson’s disease [31].

We reviewed studies published between 1980
and 2004 reporting on the effects of DBS of the
STN on changes in medication dose (and other
outcomes of interest, not considered here) [26].
Studies were included if they reported estimates of
effect for the outcomes of interest with a standard
error or a confidence interval. We were interested
in changes in the effect of DBS during the course of
the first year of use and beyond. Motor function
was measured with the Unified Parkinson’s Disease
Rating Scale (UPDRS-part III) [32] and generally
reported at 3, 6, 12 months and long-term after
implantation of the stimulator. Scores can range
between 0 and 108, lower values indicating better
motor function. The effect of DBS was measured
as the difference in scores while the stimulator is
active and baseline scores (before implantation of
the stimulator).

We recorded effect estimates (yij) reported
at each of the K¼4 occasions as well as the
variances of each estimate ðS2

ijÞ. As is common, the
covariances between estimates at different times
in each study (Sijl) were not reported. We
recorded at baseline the mean age of patients,
the proportion of females, mean duration of
disease and the mean baseline UPDRS scores.
These were included in the analyses as predictors
of the effect of DBS over time to explain between-
study heterogeneity in effects. The data are shown
in Appendix B.

Models compared

The data were meta-analyzed using the following
model specifications: assuming random study-
effects; correlated random time-effects; a full
multivariate model that allows correlations
within and between studies; assuming complete
independence between random-effects and
residuals. The latter is equivalent to meta-analyzing
the data at each time separately.

We compared the relative magnitude and
precision of summary effect estimates from
the four models. We acknowledge, however, the
relative accuracy of the estimates is difficult to

gauge since the true treatment effects are
not known; furthermore, gains in precision
are not necessarily a sign of improvement as this
may lead to narrower confidence intervals that
have coverage probabilities below the nominal
values. Thus, comparisons aimed to identify differ-
ences in results due to the way correlations were
handled in each model. For instance, we were
interested in how results from the independence
model differ from those that account for correla-
tions, and how those from models that capture the
total correlation (random study- and time-effects)
differ from the full multivariate model.

We also compared goodness-of-fit using the
likelihood-ratio statistics of nested models
and Akaike’s information criterion (AIC), which
penalizes the likelihood by twice the number of
parameters in the model. All the models included
the same fixed effects but differed in terms of the
random-effects and covariance parameters.

Specification of covariance matrices

The correlated random time-effects and multi-
variate models require specifying covariance
structures for the random-effects (D) and/or
residuals (Si). In applications with relatively small
data sets, like the current and likely most meta-
analyses, multi-parameter covariance structures
(e.g., unstructured or Toeplitz) can complicate or
even inhibit estimation. In fact, we were unable to
fit the models in our example with either of these
structures; the estimation procedure diverged or
produced nonpositive definite covariance matrix
estimates with only point estimates.

Our choice was, therefore, limited to the AR(1)
and compound symmetric structures. AR(1) seems
well-suited for longitudinal data since background
factors that induce heterogeneity may vary over
time and have a more similar impact on effects
measured closer in time than further apart.
Alternatively, the compound symmetric structure
assumes the correlation is constant. Results in our
case study were similar with either formulation; for
brevity, we only report findings based on models
using the AR(1) structure for both between- and
within-study covariance matrices.

In the full multivariate model, we parameterized
the covariance components of Si in terms of
correlation parameters which we assume to be
common to all studies. That is, for any study

i and observations j and l, Sijl ¼ �Sjl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
ij � S2

il

q
,

where �Sjl is the correlation between estimates at

times j and l in all studies. As before, we assumed an

AR(1) structure for the correlations.
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Results

Forty-six studies reporting estimates of the effect of
DBS of the STN in the absence of medication in at
least one of the time intervals of interest were
included in the meta-analysis. Half of these studies
reported effects for a single time interval and only
three reported effects at all four times of interest.
Eighty-two observations were extracted: 24 were
measured at three months after implantation of
the DBS, 22 at 6 months, 25 at 1 year and 11 in
the second year or later.

Figure 1(a) and (b) display the observed estimates
with corresponding 95% confidence intervals.
Considering the invasive nature of the inter-
vention, many studies had small samples, and,
thus, yielded estimates with wide confidence inter-
vals that sometimes included the null value. The
general pattern of point estimates reveals a con-
siderable improvement in motor skills, however.

Summary estimates from the models are pre-
sented in Table 1. Time-specific meta-analyses
(i.e., independence model) suggest a reduction of
24.9 points (95% CI: �27.3, �22.4) on the UPDRS-
Motor scale at month 3 and slightly stronger effects
at 6 and 12 months. The long-term effect appears to
decline, however, as the summary estimate suggests
improvements similar to those observed at month
3. The random study-effects and correlated random
time-effects models yielded similar point estimates
and confidence intervals for summary effects.
While the pattern was generally consistent with
those from the independence model, these suggest
a slightly stronger effect at month 3 and long-term.
This is evident from both the point estimate and
upper-bounds of the confidence intervals, which
were also narrower than those from the indepen-
dence model. The long-term effect was stronger still
in the multivariate model.

Estimates of the between-study variances
(Table 1) suggest substantial heterogeneity in
effects across studies. While point estimates of
between-study variances were similar in all of the
models, confidence intervals were narrower when
correlations were taken into account, particularly
in the long-term interval, which included the
fewest observations. The upper bound of the 95%
confidence interval was reduced from 186.6 in the
independence model to 108.4 in the multivariate
model.

Models that accounted for correlations also had
better fit than the uncorrelated random-
time-effects model, which had noticeably higher
�2log-likelihood and AIC values. In fact, these
statistics were lowered by 39 points in the corre-
lated random-time-effects model which differs
from the independence model by a single

correlation parameter. The random study-effects
model had comparable fit to the former but only
includes a single random-effect. The multivariate
model had the best fit; allowing within-study
correlations reduced the �2log-likelihood by 11.1
points compared to the correlated random time-
effects model and 14.1 points compared to the
random study-effects model. The last reduction was
achieved with five additional parameters (within-
study correlationþ three additional random-
effectsþ1 between-study correlation), however. In
both cases, improvements in fit with the multi-
variate model are statistically significant based on
chi-square test (with 1 and 5 degrees of freedom) at
5% level of significance, respectively.

We attempted to explain some of the hetero-
geneity between studies by including the mean age
of patients, the proportion of females, mean
duration of disease and the mean baseline UPDRS
scores as predictors of effects over time. The first
two did not appear to be predictive of the size of
effects and so were not retained. Mean disease
duration and mean baseline score were centered at
their mean values (14 years and 52 points) and two
studies were excluded because the mean duration
of disease of the study population was not reported.
Table 2 summarizes the findings from these
analyses. The fits of all models were significantly
improved with the inclusion of the covariates; the
�2log-likelihood and AICs were reduced by 37.5
points or more. The change was largest for the
independence and multivariate models, for which
the reductions exceeded 50 points. Thus, account-
ing for within-study correlations appears to lead to
an even greater improvement in fit relative to the
random study or time effects models in this
situation as the gap in fit statistics is even greater
than in the unadjusted analyses.

Summary effect estimates were very similar to
those obtained in the unadjusted models (Table 1),
but confidence intervals were slightly narrower. We
attribute this, at least partly, to the substantial
reduction in between-study variances by the inclu-
sion of mean disease duration and mean baseline
score. Thus, these factors account for an important
part of the observed heterogeneity. The effects of
mean disease duration and mean baseline score
were slightly stronger in the independence model,
which also yielded narrower confidence intervals
for these factors than the other models. This is
because these variables are common to all observa-
tions in the study; the uncertainty in their effects is
underestimated in the independence model, as this
ignores the correlation between repeated observa-
tions within studies. The same does not occur with
the time indicators, which have different values for
each observation.
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In addition to effect estimates, the correlated
random time-effects and multivariate models also
quantified within- and between-study correla-
tions. In the former case, the covariance matrix
of the random-effects was not positive-definite,
so that correlation estimates were not returned
from the estimation procedure. In contrast, the
within- and between-study correlations were

estimated successfully in the multivariate
models with and without other covariates
(Tables 1 and 2). Both models suggested strong
within- and between-study correlations; for
instance, in the model without other covariates,
the within-study correlation estimate was 0.97
(95% CI: 0.88, 1.00) (The confidence interval
was truncated to the maximum of the scale;
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Figure 1 (a) Effect estimates (negative¼ improvement) by months 3 and 6 with corresponding 95% confidence intervals, as well as

summary estimates from univariate random-effects models. Note: The two studies by Pinter MM in month 3 are based on two

different populations. (b) Effect estimates by month 12 and long-term with corresponding 95% confidence intervals, as well as
summary estimates from univariate random-effects models. The size of circles reflects the precision of estimates.
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the estimation procedure returned an upper
bound of 1.06), and 0.88 (95% CI: 0.79, 0.98)
between studies. We attribute this to the relative
stability of effects over time.

Comparison of models

Models that capture the correlations between
observations appeared to have significantly better
fit than the independence model and produced

summary effect and between-study variance
estimates with narrower confidence intervals.
This suggests a borrowing of strength across times in
these models, which cannot occur in the indepen-
dence model which treats the observations as
though each arose from a different study.
Furthermore, the multivariate model yielded the
narrowest interval estimates for the long-term data
and had better fit than the other longitudinal
models. Thus, it seems that modeling within- and
between-study correlations separately was
beneficial.
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Figure 1 Continued
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Table 1 Summary effect and between-study variance estimates and 95% confidence intervals from various meta-analysis models

Time-specific (Independence) Random study effects Correlated random time effectsb Multivariate modelc

Summary effect estimates
3 Months �24.9 (�27.3, �22.4) �26.2 (�28.3, �24.1) �26.0 (�27.9, �23.9) �25.9 (�27.9, �23.9)

6 Months �27.5 (�30.2, �24.7) �27.2 (�29.3, �25.1) �27.5 (�29.7, �24.9) �27.5 (�29.7, �25.2)

12 Months �28.5 (�31.0, �26.0) �28.5 (�30.6, �26.5) �28.6 (�30.6, �26.5) �28.7 (�30.7, �26.6)
Long-term �24.1 (�28.3, �20.0) �25.6 (�28.9, �22.5) �25.8 (�29.0, �22.6) �26.5 (�29.2, �23.8)

Estimates of between-study variances
3 Months 23.1 (11.2, 71.6) 26.7 (16.1, 52.4)a 20.4 (11.0, 49.7) 22.6 (11.6, 61.3)

6 Months 27.8 (13.4, 88.9) 36.0 (18.7, 85.1) 33.7 (18.7, 78.4)

12 Months 27.7 (14.7, 69.6) 26.4 (15.1, 58.0) 26.1 (14.7, 58.7)

Long-term 29.9 (11.5, 186.6) 30.1 (13.1, 124.7) 31.1 (14.5, 108.4)

Estimates of correlations
Within-Study NA NA NE 0.97 (0.88, 1.06)d

Between-study NA NA NE 0.88 (0.79, 0.98)

Model fit

�2LogL 524.7 488.7 485.7 474.6

AIC 532.7 490.7 493.7 486.6

aEstimate and 95% confidence interval of variance of the random intercept.
bImplemented with AR(1) covariance structure for the joint distribution of random-effects.
cImplemented with an AR(1) covariance structure for within- and between-study covariance matrices.
dThe confidence interval was truncated to the maximum of the scale; the estimation procedure returned an upper bound of 1.06.
NA: Model does not include correlation parameters.

NE: Correlation parameters not estimated, since covariance matrices were not positive definite.

Table 2 Summary effect and between-study variance and 95% confidence intervals of between-study variance parameters from

meta-regressions including mean disease duration and mean baseline UPDRS-motor scores of patients in each study

Time-specific (Independence) Random study effects Correlated random time effectsb Multivariate modelc

Summary effect estimates
3 Months �25.0 (�26.4, �23.7) �26.2 (�28.0, �24.4) �25.7(�27.2, �24.3) �25.7 (�26.9, �24.5)

6 Months �27.0 (�29.2, �24.8) �27.1 (�28.9, �25.3) �27.5 (�29.6, �25.4) �27.7 (�29.4, �25.9)

12 Months �28.1 (�30.3, �26.0) �28.4 (�30.2, �26.7) �28.5 (�30.3, �26.7) �28.8 (�30.4, �27.1)

Long-term �24.0 (�27.1, �20.0) �25.1 (�28.0, �22.2) �25.2 (�28.1, �22.3) �26.1 (�28.1, �24.1)
Disease duration �0.58 (�1.18, 0.02) �0.81 (�1.67, 0.04) �0.78 (�1.53, �0.04) �0.63 (�1.29, 0.02)

Baseline score �0.60 (�0.74, �0.46) �0.54 (�0.76, �0.33) �0.57 (�0.76, �0.38) �0.69 (�0.86, �0.52)

Estimates of between�study variances

3 Months 1.8 (0.35, 3491.2) 13.3(7.4, 30.4)a 5.6 (2.1, 38.1) 1.8 (0.44, 152.0)

6 Months 14.1 (6.1, 60.2) 20.9 (10.3, 62.3) 12.7 (5.9, 43.4)
12 Months 16.3 (7.6, 55.6) 14.8 (7.6, 40.8) 12.0 (6.1, 33.0)

Long-term 9.9(2.7, 407.5) 12.9 (4.4, 137.5) 6.9 (2.0, 161.3)

Estimates of correlations

Within-study NA NA NE 0.95 (0.88, 1.00)d

Between-study NA NA NE 0.77 (0.52, 1.00)d

Model fit

�2LogL 472.0 451.2 445.6 423.2

AIC 480.0 453.2 453.6 435.2

aEstimate and 95% confidence interval of variance of the random intercept.
bImplemented with AR(1) covariance structure for the joint distribution of random-effects. Final estimate of covariance matrix was not
positive-definite.
cImplemented with an AR(1) covariance structure for within- and between-study covariance matrices.
dThe confidence interval was truncated to the maximum of the scale; the estimation procedure returned an upper bound of 1.06.
NA: Model does not include correlation parameters.

NE: Correlation parameters not estimated, since covariance matrices were not positive definite.
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Models that accounted for correlations yielded
stronger long-term summary estimates. This may
be due to a relatively extreme effect estimate
(identified by an arrow in Figure 2) in this time
interval. This observation came from a study that
also reported relatively low effects at other times.
In fact, patients in this study had better motor
skills (lower UPDRS score) at baseline compared
to other studies, as a result there was lower
potential for improvement. We removed the long-
term observation and refitted the models. Figure 3
illustrates the new results (dashed lines) and the
original (solid lines) effect estimates for the
independence and multivariate models, which
had previously yielded the weakest and strongest
estimates, respectively. A greater change can be
seen in results from the independence model
compared to the multivariate model (and other
two longitudinal models – not shown), which was
essentially unaffected. This is because the extreme
point is modeled as an independent observation
in the independence model. However, similar
effects were observed from the same study at

previous times, which implies strong within-study
correlations. Thus, the effective information
provided by the observed effects is less than
if had they been observed in different studies
(i.e., if they were truly independent). This is taken
into consideration in models that account for the
correlations and, hence, the inherent loss of
information this implies. The extreme observation
is, therefore, less influential in these models and
exerts far less pull compared to the independence
model.

To explore this further, we also removed a
relatively extreme observation at month six –
the only observation from that study – and
found similar changes in summary estimates
from all models. Therefore, we infer that
accounting for the correlations reduced the
potential influence of the extreme observation.
We must consider, however, that correlations
between observations were very strong in our
data; it is not clear whether the extreme
observation would have been more influential
otherwise.
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Figure 2 Observed effects of deep brain stimulation of the subthalamic nucleus by months 3, 6, 12, and long-term and summary

effect estimates. Connected points arise from the same study; unconnected points are from studies reporting an effect estimate at a
single time. The size of circles reflects the precision of estimates. The arrow points to an apparently extreme observation, which was

removed to assess its impact on summary estimates (Figure 3)
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Discussion

In our case study, models that accounted for
correlations had better fit and produced slightly
more precise summary effect and heterogeneity
estimates, particularly in intervals where data
were limited. In fact, confidence intervals from
the multivariate model were slightly narrower
than those from random study- and time-effects
models, which also had poorer fit. Furthermore,
we found that the multivariate model (and to
some extent the random-time-effects models) was
less affected by a relatively extreme estimate in
the last interval.

The gain in precision with models that account
for correlations seems surprising, since accounting
for correlations would be expected to lead to
increases in variances [33]. It is possible that factors
that induce this variability likely affect the
measurements at different times in a similar way;
that is, studies that tend to find a strong effect may
do so at all times. Thus, allowing independent
random-effects for each outcome (as in univariate
meta-analyses) perhaps exaggerates the heteroge-
neity. Allowing correlations between random-
effects in the multivariate model, on the other
hand, may partially account for the overlap in
heterogeneity between time-intervals, leading to
lower between-study variance estimates and,
hence, increased precision. In our example, this
was apparent only when we accounted for mean
baseline score and mean disease duration; in this
case, the multivariate model suggested lower

heterogeneity than the independence model.
In the unadjusted models, we suspect the greater
precision in the multivariate model was in large
part due to the reduced impact of the extreme
observation noted above. This is evidenced by the
fact that lower bounds of the confidence intervals
were almost identical, while upper bounds
(and point-estimates) changed.

Although the correlated random-time-effects
and multivariate models generally allow more
flexibility in the specification of covariance
structures, their estimation may be hampered by
the relatively small size of meta-analyses. In our
example, we restricted the covariance matrices to
have AR(1) or compound-symmetry structures
since estimation algorithms did not converge
otherwise. Despite these simplifications, we
encountered difficulties in estimating the
correlation parameters. The situation can be
improved if within-study covariances are reported
in publications, as these can be used to fix the
parameters in the models (thus reducing the
number of parameters to estimate). Otherwise,
within-study covariances can also be fixed using
approximations of the correlation without much
risk of error in summary effect estimates [34].

Most studies reported effects at some but not all
of the times; ‘unreported’ effects are treated as
missing in the analyses. To be valid, time-specific
meta-analyses require that missingness occurs
completely at random (MCAR). By including data
from multiple times and accounting for the
correlations between them, the multivariate
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interval is removed (dashed line)
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model can borrow information requires and only
that the data be missing at random (MAR).

While our example was based on effects
measured as mean changes from baseline in a
single arm, the models we described can be used for
meta-analyses of randomized control trials without
complications. They can also be applied to different
effect measures (e.g., log-odds-ratios calculated at
various times), as long as these have (at least
approximately) normal sampling distributions.
Furthermore, although we used categorical time
intervals, continuous formulations of the time
variable could be implemented, assuming
the shape of the relationship can be specified
reasonably well. In this case, studies included in
the meta-analysis need not be restricted to those
publishing specific time points of interest.

Applications of multivariate meta-analytic
models [8–17] have typically shown little
difference from multivariate and outcome-specific
meta-analyses. Riley et al. [18] have shown slight
gains in precision in scenarios with potential for
borrowing strength. Our case study also suggests
there may be a potential for gaining precision with
a multivariate analysis. Since the true values of the
parameters of the model were not known in our
example, we cannot confirm that the observed
differences were favorable. Further simulation
studies are required to verify our findings.
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Santé du Québec to RP, a Senior Scientist award
from the Canadian Institutes of Health Research to
LJ and grants from the Natural Sciences and
Engineering Research Council of Canada and the
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Appendix

A. SAS code for multivariate meta-analysis

We describe below generic SAS code to implement a
multivariate meta-analysis model for longitudinal
effect estimates in which both within- and
between-study correlations are estimated. The
challenge lies in specifying the SAS code to estimate
all parameters of the between-study covariance
matrix (D) and the within-study correlation �S,
while holding within-study variances fixed to their
observed values.

We assume the data for the meta-analysis are
stored in a data set called mult_ma_data, in which
data pertaining to each effect estimate reported in
each study are recorded as a separate row. The data
set should include the following variables:

Study_id Unique identifier for each study; may be an

abbreviated reference (Author, year) or other

unique numeric code assigned to each study.
Meas_time Time of measurement of effect; should be stored as

numeric (3, 6, 12 . . .) if time will be considered as

continuous variable; otherwise, can use descriptive

names (‘3 Months’, ‘6 Months’ . . .).
Eff_est Estimate of the effect.

Var_est Variance of the estimate.

Covariates Variables describing the study characteristics, like

mean age of the population, etc.

For each study, one row should appear for each
measurement occasion, with missing values for
effects estimates (and other data elements) at

occasions where no data were reported. Records
from the first five studies in our example data set
were as follows:

study_id meas_time eff_est var_est

Alegret (2001) 3 Months �33.41 14.339

Alegret (2001) 6 Months . .
Alegret (2001) 12 Monhts . .

Alegret (2001) Long�term . .

Berney (2002) 3 Months �21.10 7.257
Berney (2002) 6 Months . .

Berney (2002) 12 Monhts . .

Berney (2002) Long�term . .

Chen (2003) 3 Months . .

Chen (2003) 6 Months �32.90 124.986

Chen (2003) 12 Monhts . .
Chen (2003) Long�term . .

Dujardin (2001) 3 Months �30.34 88.203

Dujardin (2001) 6 Months . .
Dujardin (2001) 12 Monhts �24.50 170.683

Dujardin (2001) Long�term . .

For instance, only month 3 results were reported by
Alegret (2001), so that data only appears in the first
record; observations in subsequent records are
missing.

The multivariate model is fitted using PROC
MIXED, in which the structure of within- and
between-study covariance matrices (AR(1) in our
example) must be specifed. The between-study
covariance matrix is common to all studies, and
all of its parameters are to be estimated from
the data. The specification of the within-study
covariance matrices requires special considera-
tion, on the other hand, since the variance
components must be allowed to vary across
studies and their values held fixed to the
observed variances of the estimates, while
the correlation parameter is common to all
studies (to ensure identifiability) and is to be
estimated from the data. We can represent the
structure of the within-study covariance matrices
as follows:

Si ¼ W�1=2
i � C�W�1=2

i

¼

s�2
i11 0 0 0

0 s�2
i22 0 0

0 0 s�2
i33 0

0 0 0 s�2
i44

0
BBBB@

1
CCCCA

�1=2

�

1 �S �2
S �3

S

�S 1 �S �2
S

�2
S �S 1 �S

�3
S �2

S �S 1

0
BBBB@

1
CCCCA
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�

s�2
i11 0 0 0

0 s�2
i22 0 0

0 0 s�2
i33 0

0 0 0 s�2
i44

0
BBB@

1
CCCA

�1=2

where C is common to all studies with an
unknown the correlation parameter, while Wi is
specific to each study and must be held fixed to
their observed values. This can be accomplished
with the parms and weight commands in PROC
MIXED. The parms statement accepts starting

values for the covariance matrix parameters
(stored in a data set), and allows specific para-
meters to be held fixed to the starting values
(with the hold option). We pass initial values for
D and C, and hold the variance parameters in C
to 1 throughout estimation. The inverse of within
study variances are specified as weights in PROC
MIXED, which by definition are constants, and
are used as multipliers to the within-study
correlation matrix as described in the formula
above. The SAS code to fit a multivariate model is
described below.

data mult_ma_data; Create a variable called w, calculated as the reciprocal of the variance of the effect estimate,

set mult_ma_data; corresponding to the diagonal components of Si.

w¼1/var_est;

run;

data whithin_study_cov; Create starting values for C and store in a dataset called within_study_cov. One row appears
param¼’Var�1’; est¼1; output; for each parameter, and a variable called est with values set to 1 for variances and 0.5 for the

param¼’Var�2’; est¼1; output; correlation parameter, which should appear last.

param¼’Var�3’; est¼1; output;

param¼’Var�4’; est¼1; output;
param¼’Corr’; est¼0.5; output;

run;

data btw_study_cov; Similarly, starting values are specified for D and stored in a dataset called btw_study_cov.

param¼’Var�1’; est¼23.1; output; Starting values can be obtained from the data; for instance, we used the between�study

param¼’Var�2’; est¼27.7; output; variance estimates from univariate analyses. We set the correlation parameter starting value
param¼’Var�3’; est¼27.8; output; to 0.5.

param¼’Var�4’; est¼29.9; output;

param¼’Corr’; est¼0.5; output;

run;

data initial_values; Initial values for both within� and between�study covariance matrices are appended into

set btw_study_cov within_study_cov; a single dataset, called initial_values. It is important that starting values of between�study
keep param est; covariance matrix.

run;

proc mixed method¼REML cl

data¼mult_ma_data;

The parameters are estimated by REML maximization. The cl option requests confidence

interval estimates for the parameters.
class study_id meas_time; Class specifies variables that are to be treated as classification or categorical variables.

model eff_est¼meas_time

/noint s cl ddf¼1000,1000,

1000,1000;

The model includes the measurement times and no intercept (noint) so that an estimate is

obtained for each occasion. The ddf¼option specifies the degrees of freedom for the t�tests;

they are set to 1000 to obtain standard normal tests as in Van Houwelingen [16].

random meas_time The random and repeated statements specifiy the structure of between and within�study

/subject¼study_id type¼arh(1) s; covariance matrices, respectively. The subject¼option specifies the units within which
repeated meas_time observations are correlated. The s option requests that the parameter estimates be displayed.

/subject¼ study_id type¼arh(1);

parms/parmsdata¼initial_values

hold¼6 to 9;

The parms statement specifies the starting values of the covariance parameters.

Hold¼ specifies the rows of parameters in the initial_values dataset that are to be held at

the provided values (in the est variable).
weight w; The variable holding the weights for each observation is specified with the weight command.

run;
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Appenndix B: Data for deep-brain stimulation
meta-analysis

The table below shows the data for the example
discussed in the paper. The mean age and

proportion of males at baseline are not shown as
these variables were not retained in the meta-
regression analyses.

Month 3 Month 6 Month 12 Long�term

Reference Effect

estimate

Variance Effect

estimate

Variance Effect

estimate

Variance Effect

estimate

Variance Mean disease

duration

Mean baseline

score

Alegret (2001) �33.4 14.3 16.1 53.6

Barichella (2003) �20.0 7.3 �30.0 5.7 13.5 45.3
Berney (2002) �21.1 7.3 13.6 45.6

Burchiel (1999) �20.0 8.0 �20.0 8.0 �18.0 5.0 13.6 48.0

Chen (2003) �32.9 125.0 12.1 65.7

DBS for PD

Study Grp. (2001)

�25.6 4.2 �28.3 4.6 14.4 54.0

Dujardin (2001) �30.3 88.2 �24.5 170.7 13.1 65.0

Esselink (2004) �25.0 17.0 12.0 51.5

Funkiewiez (2003) �36.0 5.0 14.0 56.0
Herzog (2003) �22.5 6.8 �25.2 11.0 �25.7 15.4 15.0 44.9

Iansek (2002) �8.6 41.0 13.0 27.6

Just (2002) �26.0 22.4 �30.0 20.6 14.0 44.0
Kleiner�Fisman (1999) �25.5 8.2 �19.5 13.0 13.4 50.1

Krack (2003) �36.7 5.8 �32.9 6.1 14.6 55.7

Krause (2001) �27.5 3.8 �23.5 3.8 �29.0 3.8 13.7 59.0

Krause (2004) �25.0 13.0 �23.0 15.4 14.4 60.0
Kumar (1998) �36.3 27.3 14.3 55.7

Lagrange (2002) �29.4 10.7 14.0 53.7

Limousin (1998) �31.0 2.6 �34.0 2.0 �32.5 2.0 14.0 57.0

Linazasoro (2003) �20.6 25.3 13.7 47.7
Lopiano (2001) �33.9 20.1 15.4 59.8

Macia (2004) �35.4 21.2 15.0 55.2

Martinez�Martin

(2002)

�34.9 18.0 16.4 55.7

Molinuevo (2000) �32.7 16.3 15.8 49.6

Moro (1999) �23.0 38.1 �24.1 32.9 �27.8 31.0 �28.3 34.6 15.4 67.6

Ostergaard (2002) �31.2 12.7 �33.0 9.5 15.0 51.3
Pahwa (2003) �16.2 5.9 �16.3 7.0 �11.5 12.7 12.1 41.3

Patel (2003) �29.2 5.8 10.0 47.8

Perozzo (2001) �31.7 12.4 15.4 59.7

Pinter (1999) �

Long FU

�32.2 26.5 �32.9 29.0 11.3 60.0

Pinter (1999) �

Short FU

�31.7 19.1 11.5 59.7

Rodriguez�

Oroz (2000)

�29.3 22.9 �32.0 20.0 �36.7 17.8 16.5 51.5

Romito (2003) �30.1 9.4 �30.5 8.7 �29.7 10.4 �31.9 13.3 13.8 63.9

Rousseaux (2004) �17.6 28.4 12.0 52.3
Russman(2004) (21 m) �22.9 20.0 15.9 47.1

Schneider (2003) �36.0 27.7 17.0 51.3

Seif(2004) (17.5 m) �22.5 20.3 15.0 44.2

Simuni (2002) �19.4 1.6 �18.0 1.7 �20.5 1.5 16.7 43.5
Straits�

Troster (2000)

�9.3 85.2 8.0 47.4

Thobois (2002) �24.7 15.5 �27.9 17.1 13.5 44.9

Troster (2003) �16.7 9.8 9.5 41.6
Valldeoriola (2002) �31.2 196.0 �27.4 201.6 15.6 49.0

Vesper (2002) �27.0 5.5 �30.0 3.5 14.0 53.0

Vingerhoets (2002) �19.7 18.5 �22.1 18.1 �24.3 18.2 �21.9 16.7 16.0 48.8
Volkman (2001) �37.8 20.9 �34.0 26.4 13.1 56.4

Weselburger (2002) �22.1 40.8 14.0 50.3
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